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ABSTRACT
The abnormal ubiquitin-proteasome is found as an important target in various human diseases, espe-
cially in cancer, and recently it has received prevalent attention as a challenging therapeutic target.
The current work is designed to derive a predictive two-dimensional quantitative structure-activity
relationship model for anticancer human proteasome target of NF-jB signaling pathway. The estab-
lished 2D-QSAR is dependent on multiple linear regression approach and validated through leave-
One-Out and external test set prediction method. The robust QSAR model showed the r2 of 0.83 and
q2 of 0.80 and pred_r2 of 0.77. Three chemical properties, electronegativity count, average potential,
and T_2_N_6 were identified as significant descriptors to predict the anticancer activities of the prote-
asome antagonists. Besides, the predicted top hit compounds were considered to check out the com-
pliance with Rule of five and pharmacokinetic parameters for oral bioavailability in the human body.
The molecular docking was accomplished to unravel the molecular mode of action of best-predicted
compounds which was compatible with the standard drug. Following this approach, lastly two com-
pounds NP and AP were recognized as the best candidates since these top compounds follow all the
standard limit point of entire filters and indicated effective and decent docking score. The outcomes
of the study sturdily suggested that the developed model and top hit compound’s binding conform-
ation are rational in the exploration of unknown antagonist’s anticancer activity. The research would
be of great support and is supposed to be of immense significance in the development and designing
of drug-like candidates in preliminary drug discovery.
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Introduction

An ubiquitin-proteasome (UP) emerged as a crucial anticancer
protein in current pharmacological research. The UP stimu-
lates NF-jB signaling, which involved commonly in the up-
regulation of various antiapoptotic genes, pro-inflammatory
cytokines, and cell adhesion molecules, hormonal/growth fac-
tors that increase the persistence and vitality of myeloma cells
or cancerous cell of plasma (Kravtsova-Ivantsiv & Ciechanover,
2015; Chen & Zhao, 2013; Kubiczkova, Pour, Sedlarikova,
Hajek, & Sevcikova, 2014). The ubiquitin-proteasome cascade
is primarily considered as an unpretentious destruction pro-
cess against damaged and insignificant cellular proteins none-
theless at the present time, this pathway has been emerging
as a vital mechanism involving in different intracellular signal-
ing cascade regulation, natural breakdown of cyclin-reliant
kinases, cyclins, cellular processing, and regulation of apop-
tosis and angiogenesis in eukaryotes. The UP pathway
responsible for degradation and processing of misfolded non-
functional proteins like transcription factors through proteoly-
sis (chemical reaction) with the help of enzyme protease and
the entire mechanism is guided by a well-organized mode of
ubiquitination signaling (Spataro, Norbury, & Harris, 1998;
Orlowski & Dees, 2002; Voutsadakis, 2017). The previous
research revealed that the UP signaling plays an essential role
in the NF-jB signaling. The UP system does not target only
IjB protein (NF-jB pathway) degradation nonetheless also
participate in the processing of p105 and p100 precursors
maturation with the help of proteasome. More remarkably,
the NF-jB signaling pathway activates through ubiquitinated
activation of cytoplasmic protein kinase by the independent-
degradation mechanism which initially activated directly
through the phosphorylation of IKK proteins that may be
induced by means of various stimuli such as growth factors,
the stress hormone, cytokines, and UV rays, etc (Xie et al.,
2009; Tu et al., 2012). Conclusively, the phosphorylated IKK
protein in the cytoplasm further targeted to the ubiquitination
proteasomal degradation of the IjB proteins that results in
the liberation of the NF-jB transcription factor and transloca-
tion into the nucleus then initiates the transcription process
and gene expression (Palombella, Rando, Goldberg, &
Maniatis, 1994). Thus, the elevated concentration or high level
of proteasome along with the abnormally higher level of pro-
teasome function has been observed in a diverse cancer type
and appears to be crucial in the tumor or cancer cell progres-
sion. In addition, it supports in shield against apoptotic path-
ways and eliminating the cell of impaired proteins (Arlt et al.,
2009). Dysregulation or frequent activation or high-regulation
of the NF-jB signaling establishes a complex microenviron-
ment that is serious towards tumor formation or cancer devel-
opment (Gilmore, 1999; Pikarsky et al., 2004). Inhibition of the
UP pathway has been exhibited to stimulate apoptosis in
many cancer types. Previous studies revealed that the tumor
or cancer cell is highly sensitive as compared to normal cell
towards proteasome inhibition (Adams, 2003; Delic et al.,
1998). The previous studies have been widely explored the
molecular mechanism of action of proteasome inhibitors that
may specifically target cancer cell. The proteasome suppres-
sion may selectively induce the apoptosis in various cancer

cells through the ubiquitin-proteasome pathway system
(Crawford et al., 2006; Kazi et al., 2009). The proteasome
antagonists have also acted as to induce cell cycle arrest. The
proteasome prevention in several cases enhance the oxidative
stress in tumor or cancer cell and results in the cell death
(Wang, Yen, Kaiser, & Huang, 2010).

The different kinds of cancer namely breast cancer, ovar-
ian cancer, non-small cell lung cancer, colon cancer, hepato-
cellular carcinoma, prostate cancer, and multiple myeloma,
etc. develop due to abnormal activation of the ubiquitin-
proteasome pathway (Cardoso, Ross, Piccart, Sotiriou, &
Durbecq, 2004; Mitra, 2018; Escobar, Velez, Belalcazar, Santos,
& Raez, 2011; Jang, 2018; Dawson, 2008; Cao & Mao, 2011).

Beyond the last ten years, proteolytic or proteasome
inhibition has become an emerging field of interest in the
therapeutic area for medication towards multiple myeloma
and different types of lymphomas. In 2003, Bortezomib (BTZ)
has reported as the first and principal FDA accepted and per-
mitted drug as a proteasome inhibitor. Hence, the therapies
which are centered on Bortezomib drug have become basic
intended for multiple myeloma cure at all phases of the dis-
ease (Nalepa, Rolfe, & Harper, 2006). Due to the clinical
establishment of BTZ, the death rate of MM patients has
been reduced. However, it is not possible for all patients to
respond to Bortezomib based treatment because of its sev-
eral limitations. Besides, relapsing arises in some patients
who responded initially for medicine. Particularly, solid
tumors, have often become resistant to BTZ (Moreau et al.,
2012; Dick & Fleming, 2010). Likewise, Carfilzomib, a second-
generation U.S. FDA approved (August 2012) proteasome
inhibitor stimulates responses in a lesser of multiple mye-
loma patients. Later, four new second-generation prote-
asome inhibitors namely Ixazomib, Oprozomib, Marizomib
and Delanzomib having wide-range of anticancer and diverse
pharmacological properties, also showed several clinical
actions in bortezomib-resistant cancers (Chen, Frezza,
Schmitt, Kanwar, & P Dou, 2011; Schrader et al., 2016).

Terpenoids signify a wide range of naturally occurring mole-
cules comprising monoterpenoids, diterpenoids, triterpenoids,
and tetraterpenoids. Plant-based natural products retain bio-
compatible characteristic, high chemical diversity, and other
crucial molecular properties that make them valuable and
advantageous as lead skeleton or scaffold for drug discovery
(Harvey, Edrada-Ebel, & Quinn, 2015). These natural com-
pounds can prevent cancerous cell differentiation and have
the ability to stimulate cancer cell death by obstructing various
specific molecular anticancer targets comprising NF-jB based
proteasome complex and a number of antiapoptotic proteins,
etc. (Yang and Ping Duo 2010). Moreover, previous studies sug-
gested that Betulinic acid and glycyrrhetinic acid have the
potential to obstruct and hinder the human 20S proteasome in
cancer disease (Huang et al., 2008; Qian et al., 2011).

The present study involved in the understating of physio-
chemical properties of molecules and their mechanism which
regulates the proteasome pathway activation. To avoid drug
resistance and increased cytotoxicity in cancer therapy, the
current study focused on the development of more effective,
potential, least toxic, safe and more specific agents or
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compounds against proteasome involved in NF-jB pathway
activation. Therefore, the identified compounds could be fur-
ther modified to express better inhibitory action for prote-
asome and might be able to offer a fresh and new
therapeutic entity to treat a number of cancer types and
other inflammatory diseases.

To establish the current study, a total of 71 inhibitors compris-
ing dipeptidyl boronic acid, betulinic acid, and glycyrrhetinic acid
inhibitors for human proteasome were retrieved through previ-
ous literature to develop a QSAR model. Subsequently, best-pre-
dicted compounds were screened through a derived model. Later
on, predicted best candidates were considered to assess the
pharmacokinetics compliances and compared to the FDA
approved drug Bortezomib and Carfilzomib against proteasome.
Furthermore, the best-screened compounds were prioritized
through docking simulation against the human proteasome tar-
get of the NF-jB signaling. As far as we know, it is conceivably the
first work reported on this subject/topic. Henceforward, the cur-
rent study would be accountable for deep understanding for
identification and optimization of novel drug-like leads in modern
drug designing process.

Materials and Method

Biological dataset selection

Primarily, a library of 71 known proteasome inhibitors were
retrieved and compiled from different works of literature
which include terpenoids, dipeptidyl boronic acid analogs
(Bortezomib, reference drug derivatives) (Huang et al., 2008;
Qian et al., 2011; Milo et al., 2011). The selection of the data-
set was centered on the structural diversity and applicability
domain of the endpoint (IC50) of the dataset. The inhibitory
concentration (IC50 mM) of proteasome antagonists were
transformed into their negative log (pIC50) which was consid-
ered as the dependent variable and descriptors as independ-
ent variables to develop the statistical regression model.
Thus, a schematic representation of the methodology
adopted in the study is shown in Figure 1.

Applicability domain of dataset

The applicability domain (AD) is a significant concept in the
development of QSAR model that must be quantified before
the prediction of a set of molecules. The applicability domain
signifies the range of biological activity (IC50 mM) of the data-
set (Luque Ruiz & G�omez-Nieto, 2018). It allows us to esti-
mate the ambiguity in the prediction set based on similarity
to the compounds AD values that involved in the procedure
of model generation and improvement. Though, the value of
the AD of the training set used to develop QSAR model was
persisted between 7.85 and 4.65. Likewise, the range of
query set compounds existed as 7.85–5.68.

Design and execution

The design and execution section define the material and
practices employed for (1) structure normalization (2)
Molecular descriptors calculation (3) Model generation (4)
Statistical parameters evaluation of the generated QSAR
model (5) Bioactivity prediction for query set compounds.

Structure normalization/standardization

The structural geometry optimization and energy calculation
of compounds were executed using VLifeMDSv4.5, 2018
(Molecular Design suite) molecular modeling software.
Further, entire 2D molecule structures were converted into
3D structures by utilizing the V-Life converter module
through consuming Merck Molecular Force Field (MMFF)
based on distance-dependent dielectric function and energy
gradient of 0.001 kcal/mol Å.

Chemical descriptors calculation

The molecular descriptors viz., physicochemical, atom-type
count and alignment independent were calculated and
screened for each compound of the dataset using the
QSARPlus module of VLifeMDS v4.5, 2018 (VLife
Technologies, India) software. Additionally, the highly

Figure 1. Work flow representation .
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correlated chemical descriptors with biological activity were
extracted to acquire the superlative and finest subgroup of
chemical descriptors.

QSAR model development

An experimental dataset of 71 compounds with optimized
energy and calculated descriptors were further practiced to
produce 2D-QSAR model using VLife v4.5, 2018 module.
Primarily, the dataset was randomly partitioned as 20% of data
into test set (15 compounds) and the remaining 80% of the
modeling set was utilized for the training set (56 compounds).
As well, the training set was applied to develop a model and to
adjust the standard parameters of the model and test set was
utilized to evaluate and validate the robustness, predictive/
extrapolative ability and competence of the derived 2D-model.
The chemical structure of molecules with their actual and
observed biological activity against proteasome is presented in
Table S1 (Supplementary material). The PIC50 (mM) value was
taken as the dependent variable along with chemical proper-
ties as independent variables. After that, the MLR approach
with the stepwise forward-backward manner was employed to
generate a reliable QSAR model.

Prediction set generation and bioactivity prediction

A query set of 3049 compounds were screened through in
silico approach to identify the best lead. To accomplish the
protocol, different query set (prediction set) of 3049 com-
pounds were collected through the PubChem database. The
query set compounds have comprised the terpenoids and
their derivatives (natural plant-based) and analogs which is
based on 80% similarity of parent compound i.e. drug. The
prediction set selection was based on Tanimoto score similar-
ity of 80% with that of Bortezomib, Betulinic acid, and
Glycyrrhetinic acid as well (Bajusz, R�acz, & H�eberger, 2015).
Further, these query set compounds were screened for bio-
activity prediction through the derived 2D-QSAR model.

Oral bioavailability (drug-likeness) and ADMET
risk screening

A thumb rule of five and pharmacokinetic compliance were
calculated to screen out best compounds which were having
the physiochemical properties like a drug. It is very crucial to
recognize the various physiochemical properties that would
responsible to prepare and produce a compound as an oral
bioavailable in the physiological system i.e. human body. In
addition, ADMET risk parameters and drug-likeness signify
the absorption, distribution, metabolism, excretion, and tox-
icity of compounds as well. The ADMET descriptor evaluation
allows us to eliminate the compounds with poor features of
ADMET to elude expensive reformulation in early drug dis-
covery. The druggability or pharmacokinetics compliance of
predicted compounds were evaluated using the United
States Food and Drug Administration (USFDA), a standard
TOPKAT, Discovery Studio, Accelrys, USA software (Shukla
et al., 2014).

Target identification and molecular docking studies

The proteasome was reported as a unique and novel promin-
ent target against cancer treatment (Adams, 2004). The ubiqui-
tination-proteasome showed a vital role at the time of NF-jB
activation. Moreover, proteasome was involved in the polyubi-
quitination and subsequent proteolytic degradation of cyto-
plasmic inhibitory protein kinase i.e. IjB kinase. The
proteasome released the NF-jB transcription factor bounded
with IjB which stimulate the NF-jB canonical or non-canonical
pathway activation through IKK complex phosphorylation.
Therefore, ubiquitin-proteasome/proteolysis cascade showed a
dynamic and vital role during protein degradation in the cyto-
sol or nucleus at various steps of the signaling (Xiao, Harhaj, &
Sun, 2001; Pickart, 2004). Hence, docking analysis was per-
formed by employing BioSolveIT, FlexX v2.1.8. and docking
poses visualization was done through Discover Studio v3.5
(Accelrys, San Diego, CA, 2013) to examine the binding active
pose of the best antagonist within a bioactive pocket of a pro-
tein/target. The docking simulations may offer a deep and
broad understanding of the ligand and target/protein
interaction.

Protein preparation

To accomplish the molecular docking simulation, the 3D
crystallographic structure (X-Ray) of the target protein, prote-
asome bound with drug Bortezomib (resolution of 2.1 Å) was
retrieved through the RCSB Protein database (http://www.
rcsb.org/). To execute the docking simulation, the human
20S proteasome, PDB ID: 5lF3 with bound drug Bortezomib
as a complex was considered. After that, the protocol of pro-
tein preparation was applied to accomplish the tasks includ-
ing the addition of missing atoms in incomplete residues,
modeling required or absent loop regions, deletion of extra
of substitute conformations, deletion of heteroatoms and
water molecules, protonation of titratable residues, a nega-
tive log measure of the acid dissociation constant and add-
ition of hydrogen atoms.

Ligand preparation

The best-predicted compounds including drugs along with
its analogs and natural compounds were prepared before
performing the docking study. The geometry optimization of
modeling compounds were completed by applying the

Table 1. Statistical parameters of QSAR model.

Parameters Value

N (Number of components) 56
Degree of freedom 51
r2 (Regression coefficient) 0.83
q2(Cross-validated correlation 0.80
F-test (Fischer’s value) 65.34
r2_se (Standard error) 0.30
q2_se (Standard error) 0.33
Pred_r2 0.77
Pred_r2se 0.39
Z-Score
r2 7.67
q2 6.89
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algorithmic force field monitored by the software protocol.
The three-dimensional conformation generation and pre-
pared ligands were saved as MOL2 files.

Terpenoids molecules parameterization

The natural molecules were standardized prior to docking
studies. The geometry optimization and energy minimization
of natural compounds were performed using the
Chem3Dv15.0.0.106. The natural compound structures were
subjected to energy minimization by following the two-phase
process. In the first phase, the Molecular Mechanics-2 or MM2
force field was employed for minimization and executed until
the Root Mean Square (RMS) gradient turn into 0.1 kcal/mol Å
then the for the second phase, MM2 minimized molecules
were again considered to re-minimize by the molecular orbital
package (MOPAC) approach and executed until the RMS gradi-
ent achieved the value of 0.0001 kcal/mol or less. Afterward,
the molecular docking studies were performed with the stand-
ard default parameters of the software.

In silico protein-ligand docking studies

Furthermore, the best predicted active compounds were
exposed to docking studies in order to investigate and explore
their probable interacting poses and affinity towards the tar-
get. Furthermore, molecular docking study was accomplished
by employing BioSolveIT, FlexX v2.1.8, as per hardware stand-
ard (Pagadala, Syed, & Tuszynski, 2017). Additionally, standard
parameters of FlexX were used for iterative growing and suc-
cessive scoring of different docking poses. Henceforth, in order
to implement the docking experiments for all best predicted
and screened antagonists, the active and vigorous site atoms
within a protein/target was demonstrated as atoms within a
radius of 6 Å with the particular co-crystallized ligand of the
receptor. The files of receptor description were automatically
created from the (receptor) PDB coordinates which were used
by FlexX. Moreover, 2 D interaction was also performed to ravel
out the definite interactive residues of the targeted protein
with bound ligand (Hit).

Reference drug

The First U.S. FDA approved drug was considered for com-
parative study. Thus, Bortezomib expressed a noteworthy
breakthrough as the leading and principal drugs in the treat-
ment of malignant disease by functioning as proteasome
inhibitors. This drug was used as a control drug against
human proteasome complex in molecular docking and phar-
macokinetic compliance assessment for comparative analysis
with respect to predicted best compounds.

In silico druggability and pharmacokinetics
compliance evaluation

Human druggability and pharmacokinetic assessment per-
form a vital role in evaluating the quality of potential clinical
hit compounds where the precise and accurate valuation of

clearance, distribution volume, drug bioavailability, and the
plasma protein- concentration-time figures are the coveted
endpoints. The pharmacokinetic properties specify to the
Absorption, Distribution, Metabolism, Excretion, and Toxicity
(ADMET) of the compounds. Drug-likeness of the candidate
compounds were evaluated through Lipinski’s Rule of Five to
understand the physicochemical properties of the candidate
compounds which would be responsible to make it orally
active inside the human body. While primary drug discovery,
optimization of pharmacokinetics compliance and druggabil-
ity are crucial for minimizing the later failure in the drug
designing process.

Results and Discussion

Biological dataset clustering

Clustering is a computational method to understand and
visualize the structure of complex data and make a grouping
of the data points based on similarity. The clustering analysis
of proteasome inhibitors were performed using Molsoft
L.L.C., San Diego, CA software and represented in Figure S1
(Abagyan, 2018). This approach enables us to create bio-
logical intrusion or interference for additional experiments.
As far as, clustering is an unsubstantiated and unsupervised
splitting of the dataset into two different groups so that the
compounds in each group would be more similar and com-
parable to each other (Ronan, Qi, & Naegle, 2016).
Hierarchical clustering analysis of entire dataset was done
based on Tanimoto structure similarity distance of 0–0.7
which indicated that the training and test set compounds
fall under the applicability domain of the developed model.

QSAR model and its validation

Previously, it has been reported that the Bortezomib; a
dipeptidyl boronic acid and its derivatives, Glycyrrhizin acid,
Betulinic acid, and their derivatives are strong, potent, effect-
ive, and reversible proteasome antagonists. Furthermore,
experimental in vitro antagonist activity (IC50) of known pro-
teasome inhibitors were implemented to develop a statistic-
ally significant model using a multiple linear regression
approach. The structure-activity relationship model yielded
satisfactory and significant correlation between biological
activity-chemical descriptors in the statistical form of regres-
sion coefficient r2 ¼ 0.83, the reliability and the robustness
for the derived linear model was assessed from the cross-
validated correlation coefficient i.e. q2 ¼ 0.80, represented in
a regression plot Figure 2. The regression plot between
observed vs predicted activity provides knowledge about the
dataset fitness and the dataset activity accuracy for the
external test set. The external extrapolative prediction
strength of the 2D-model was (pred_r2) 0.77 with a degree
of freedom 51. The regression graph of the modeling set
including training and test set shows a simple relationship
through a straight regression line between two variables i.e.
dependent and independent variable. The observed straight
line found to have best and proper fitness of the entire
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biological dataset. In the fitness plot, the value of q2 (cross-
validation) with 0.80 signifies that the compounds of the
training set, shown by blue dot have not exhibited any stat-
istical dissonance. As well, the regression r2 of 0.83 (test set
as a red dot) indicates the decent predictability of the
derived model towards untested or unknown molecules
along with small standard error that illustrates the compre-
hensiveness of the biological dataset. Moreover, the pred_r2

¼ 0.77, Fisher values ¼ 65.34 and Z-score values of 7.67 (r2)
& 6.89 (q2) statistical potentials established the good and
robust quality of the derived model.

Stepwise forward-backward

The stepwise forward-backward is a potent, magnificent, and
long exhausted method in the QSAR model development. In
this method, descriptors as independent variables have a
strong correlation with the biological activity or experimental
IC50 values were included step by step to a regression equa-
tion and importance of each incorporated descriptors was
analyzed to remain in the final multivariate equation.

Model statistical evaluation

Model validation is a precise and crucial phase in model devel-
opment. Consequently, different kinds of validations were
accomplished and the best and robust 2D-model was obtained
employing the various statistical limits of parameters (Cramer,
Bunce, Patterson, & Frank, 1988; Golbraikh & Tropsha, 2002).
Validations were accomplished for the tested alignment which
is listed as, e.g., (i) Coefficient of determination (r2) must be >

0.7, (ii) Leave-one-out cross-validation (LOOcv) or correlation
coefficient (q2) must be > 0.5 (iii) pred_r2, a Correlation coeffi-
cient of external prediction set must be >0.5 (Tropsha,
Gramatica, & Gombar, 2003). This is essential to validate the reli-
ability and ability of the developed QSAR model to predict the
bioactivity of somehow similar compounds. (iv) degree of free-
dom must be higher. (vi) higher F-test value for statistical
importance of model (Same set of compounds and descriptors).
(vii) standard error of estimate i.e. r2_se and q2_se should be

smaller. (viii) alpha_test, a statistical parameter evaluated by ran-
domization must be <0.1. (ix) Z-score calculated by randomiza-
tion must be higher. The predictive ability and strength of the
derived model are was analyzed by calculating the cross-vali-
dated regression coefficient (q2) using the following mathemat-
ical equation 1 (Shen et al., 2002), where Yact and Ypred denote
the actual and predicted pIC50 values for i

th compound respect-
ively, however Ymean signifies the average of actual activity
(pIC50) value of entire compounds of training set.

q2 ¼ 1�
P ðYact�YpredÞ2
P ðYact�YmeanÞ2

(1)

The regression coefficient (pred_r2) for external test set was
calculated by employing the equation (2) (Kier & Hall, 1977;
Cramer et al., 1988). The pred_r2 validate the predictive strength
and ability of the derived QSAR model for external query set and
verify the robustness and reliability of the predicted result.

Predr2 ¼ 1�
P ðYact�YpredÞ2
PðYact � YpredÞ2

(2)

The observed satisfactory standard error of the QSAR
model for r2 and q2 were 0.30 and 0.33 respectively along
with pred_r2se of 0.39. Hence, the minimum standard error
of r2_se and q2_se revealed the overall features and qualities
of the QSAR model. Additional statistical evaluation of the
model was observed through Z-scores which was indicated
7.67 and 6.89 for r2 and q2 respectively and Fischer’s value (F
test) i.e. 65.34 was found to have statistically significant val-
ues for the derived model and presented by Table 1. The
random distribution pattern indicated that the developed
QSAR model provided a decent and proper fitness of the
data (Figure 3). The plot indicated the random distribution of
compounds to analyze the regression value of the derived
MLR model. The graphical representation of the residual val-
ues (training and test set) explains the degree of correlation
between actual and predicted values of the developed
model. The distribution of the residuals on both sides of the
middle X-axis line (Error line range �1 to 1) which is indicat-
ing actual values of the dataset. The standard error of the

y = 0.8858x + 0.6827
R² = 0.8386
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Figure 2. Regression plot between actual and predicted activity of compounds.
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derived model range from 0.3 to �0.243, that indicates the
acceptable error of the derived MLR model.

Outlier’s recognition

In the developed QSAR model, the compounds which have
unpredicted and unexpected biological activity, do not fol-
low the applicability domain range and are not able to fit in
the model are recognized as outliers. Therefore, the com-
pounds that are found as outliers in the modeling set were
removed from the dataset and query set compounds. The
resultant outliers may have a different mode of action for a
particular receptor/target and act by a different mechanism.
Removal of outliers are valuable in signifying the experimen-
tal limits of the biological dataset and also define the com-
mon mechanism of action of compounds which is modeled
by more than one descriptors (Verma & Hansch, 2005).

Contribution of molecular descriptors

The contribution of chemical descriptors correlated to anti-
cancer activity was recognized in the resultant QSAR model.
The model revealed that four molecular descriptors, namely
Electronegativity count, Average

Potential, T_2_N_6, and H-Acceptor Count have shown a
significant correlation with the biological activity. So far,
descriptors involved to govern the anti-cancer property is
presented by equation 3.

Predicted Log pIC50ðlMÞ ¼ 8:5128 ð60:3976Þ
� Electronegativity Count

� 30:2378 ð610:7260Þ
� Average Potential

0:1875 ð60:0256Þ x T2N6

� 0:2500 ð60:0482Þ
� H-Acceptor Count

þ 0:002

[3]

The statistically derived linear model significantly showed
a strong positive correlation with the Electronegativity Count
and T_2_N_6 and negatively correlation with Average
Potential and H-Acceptor Count. Moreover, T_2_N_6 is topo-
logical chemical descriptor which defined that the number of
double-bonded atoms (any double-bonded atom, T_2) sepa-
rated from nitrogen atom by six bonds in a molecule. The
descriptors contribution of the model is represented in
Figure 4. Moreover, the graph (Figure 5A and B) demon-
strates the fitness and pertinence of actual versus predicted
values of entire compounds for biological activity.

Ligand-based drug likeness screening (analogs)
Conclusively, to identify the best and safe antagonist, a library of
3049 (Query set) compounds were virtually screened through
PubChem database with 80% similarity to the drug and terpe-
noids for proteasome targeting NF-jB pathway inhibition.

Additionally, these predicted compounds were screened for bio-
activity prediction using the derived QSARmodel.

Prediction set screening through thumb rule of five and
ADMET risk parameters
Poor or undesirable pharmacokinetic properties of drugs or
compounds are a major cause of the cessation of a com-
pound’s progression in the drug development pipeline.
Successively, these query set were again filtered through
Lipinski’s rule of five directed to assess the chemical proper-
ties concerning oral bioavailability. Out of 3049 prediction
set compounds, only twenty compounds were found to fol-
low the standard limit of the drug-likeness features. Later,
top screened compounds were analyzed through the phar-
macokinetic compliance: Absorption, Distribution,
Metabolism, Excretion, and Toxicity to find a drug-like lead
compound with good pharmacokinetic properties. The top-
most hit compounds have been found to compatible with
that of standard drug Bortezomib (Yadav, Nath Mishra, &
Khan, 2018). To evade the late-phase failure, calculation of
pharmacokinetic parameters of the predicted compounds are
essential in the early drug development practice.

Assessment of drug-likeness for oral bioavailability

Furthermore, Lipinski’s rule of five was applied with the aim of
calculation of drug-like physiochemical properties of best candi-
dates. As far as, drug-likeness is defined as a qualitative prin-
ciple used in the drug design to understand how molecules or
candidate compounds can show drug-like properties concern-
ing bioavailability. It is crucial to recognize the different physio-
chemical properties that are responsible to make a compound
biologically active and that would work as an orally stable and
active molecule in the biological system. So far, every predicted
hit compound cannot be treated as a therapeutic compound
before any confirmation and validation of some pharmacoki-
netic parameters and toxicity using in silico approach. A trad-
itional approach to calculate the drug-like properties is to
analyze the amenability of the rule of thumb i.e. Lipinski’s Rule
of Five (Lipinski, Lombardo, Dominy, & Feeney, 2001).

To complete this purpose, the aqueous solubility, intes-
tinal absorption, hepatotoxicity, blood-brain penetration
(BBB) and plasma protein binding (PPB) along with CYP2D6
binding of the potential compounds (predicted) were calcu-
lated simultaneously. Though, the thumb rule could not pre-
dict whether a compound is pharmacologically active or not.
This thumb rule is significant in the drug designing and
development process wherever an active and potential lead
could be optimized in a step-wise manner for enhanced bio-
logical activity and specificity against target/protein. The cru-
cial role of the rule mainly focus on the information that the
orally managed and controlled drugs must contain a molecu-
lar weight less than 500Da, AlogP i.e. an octanol-water parti-
tion coefficient less than 5, H-bond acceptor and donor of
10 and 5 respectively (Table 2). Also, the oral bioavailability
of all predicted compounds and drugs were measured
through the polar surface area (PSA) that was calculated
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using a methodology, centered on the addition tabularized sur-
face assistances of polar fragments viz. topological polar surface
(TPSA). The PSA was found to link substantially with unrecep-
tive and passive transport across the cell membranes and
hence, permits the calculation and extrapolation of transport
properties of compounds or drugs and was related to drug bio-
availability. Usually, it was observed that the passively/inactively
absorbed compounds with less than 140Å of PSA value have
shown to have low oral bioavailability (Ertl, Rohde, & Selzer,
2000; Maurya, Khan, Bawankule, Yadav, & Srivastava, 2012).
Therefore, predicted compounds were subjected to screened
out by utilizing the filtering parameters of Lipinski’s rule of five
which is principal and key screening practice as well as phar-
macokinetic evaluation; a secondary screening process. Results
indicated that NP and AP predicted hits of the query set were
found to settle within the satisfactory limits that possess all the
physiochemical properties liable for the oral bioavailability.
Moreover, it was noticed that NP and AP were not violated any

rule of Lipinski as similar to the standard drug of the target. In
the perspective of pharmacokinetics, the ADME parameters
(Absorption, Distribution, Metabolism, and Excretion) such as
aqueous solubility, serum protein binding, blood-brain barrier
penetration, hepatotoxicity and intestinal absorption of best
candidates were calculated and compared with the control
drug, presented in Table 3. As per the study, NP (natural) and
AP (analog) showed good intestinal absorption as compared to
bortezomib. The control drug indicated moderate intestinal
absorption and undefined blood-brain barrier penetration.

In silico toxicity risk valuation

As a final point, the toxicity risk calculation is important in the
screening of best and effective drug or compound in the early
drug development process in respects to the safety concern.
In silico compliance with toxicity, the calculation is not only
rapid but it may similarly reduce the cases of animal

Figure 3. Plot of residuals for both training and test sets against the experimental pIC50 values.
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experiments. To capture this, the different parameters of tox-
icity such as TD50 (tumorigenic dose), LD50 (lethal dose),
mutagenicity, skin irritancy, aerobic biodegradability, and ocu-
lar irritancy were calculated (Table S2). Results indicated that
the potential hits namely AP (analog) and NP (natural) possess
lethal dose (LD50) values of 4.74789 and 3.97152 (g/kg body
weight) respectively. As per toxicity assessment, NP and AP
have mild skin irritancy, weak skin sensitization, and non-
mutagenicity as similar to control drugs Carfilzomib and
Bortezomib. In the context of aerobic biodegradability, NP and
AP were found to possess biodegradability rather than control
drugs that have not shown the aerobic biodegradability

property. Additionally, a rat concentrated tolerated dosage for
NP and AP are 0.0755808 & 0.104032 g/kg body weight, how-
ever, Carfilzomib and Bortezomib indicated 0.0746945 and
0.440114 respectively. The observed Fathead Minnow LC50
(lethal concentration) values of NP and AP are 0.964428 and
0.00758264 g/l whereas in case of drugs it is 0.000111043
(Carfilzomib) and 0.0431359 (Bortezomib). Likewise, Daphnia
magna EC50 (Effective concentration) is 12.0665 (NP) and
5.62132 (AP) but in the drugs, it has found 0.0533036 and
0.414224 (mg/l). Therefore, results of toxicity prediction sug-
gested that the NP and AP retain non-mutagenicity of chromo-
somal abnormalities and aerobic biodegradability, hence these
two predicted best compounds are non-persistent, non-toxic
and eco-friendly. As a result, the computationally calculated
toxicity parameters of the topmost candidates could be exam-
ined and observed with the assistance of dose limited studies.

Molecular docking studies for potential target

Molecular docking studies of most potent anticancer com-
pounds were performed to explore their respective binding
mode of action and binding affinity with the target protein.
Hence, all predicted compounds through the derived QSAR
model were further screened through molecular docking
studies. Conclusively, the crucial objective of docking is to
light up the interaction of best effective hit which governs
the anticancer activity against the specified target i.e. human
20S proteasome. The docking procedure was standardized
through the re-docking study of the co-crystallized drug
(Bortezomib) with the proteasome target. The optimized
molecules were shown the various interactions like hydrogen
bonding, Pi-Pi interaction and van der Waal’s interaction. The
hydrogen bonds and pi-pi interaction between the target
and hit compounds may be considered as a complex stabil-
izer. Thus far, the docking results revealed that the predicted
compounds NP and AP indicate the most remarkable
molecular interaction between inhibitors and target. The
docking simulation suggested that the predicted compounds
namely NP and AP signify the highest negative docking
score of �23.85 and �25.14 respectively among all the

Figure 5. (A) Actual versus Predicted activity for the Training set (B) Actual
versus Predicted activity for the Test set.

Table 2. In silico Lipinski’s Rule compliance of top hits for oral bioavailability.

Compound
Molecular

weight (�500Da)
Oral Bioavailability:
TPSA (�140Å)

H- Bond
Donor (�5)

H- Bond
Acceptor (�10) AlogP (�5)

Rotatable
Bond (�10)

Rule of
5 violation

Bortezomib
(Reference drug)

384.247 124 4 6 2.58 9 0

Carfilzomib 719.93 159 4 8 3.79 20 3
NP 364.189 109.42 4 6 0.2 0 0
AP 331.462 71.483 2 3 2.92 7 0

Table 3. In silico pharmacokinetic assessment of predicted hit compounds (terpenoids and analogs).AQ4

Compounds
Aqueous
solubility

Blood-brain barrier
(BBB) penetration

CYP2D6
Prediction

Hepatotoxic
Prediction

Intestinal
absorption

Plasma
protein binding

Bortezomib
(Reference drug)

3 (Good) 4 (undefined) FALSE (non-inhibitor) FALSE (non-toxic) 1 (moderate) FALSE (poorly
bounded)

Carfilzomib 3 4 FALSE FALSE 3 (very poor) FALSE
NP 4 (Very good) 3 (low) FALSE FALSE 0 (Good) TRUE (highly

bounded)
AP 3 2 (Medium) FALSE FALSE 0 TRUE
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predicted compounds as compared to that of reference drug
bortezomib i.e. �28.2. Noteworthy, molecular interaction of
these potential hits along with standard drug revealed that
Thr20, Thr21, Ala 49, Gly47 and Thr1 are common crucial key
residues located within the active site (binding pocket) of
the protein/target. The natural predicted compound NP
showed the four hydrogen bonds with a measured distance
of 2.77Å, 3.06Å, and 3.05Å with Thr20, Thr21, Ala49, and
Gly47 respectively. The highest negative docking score
showed that the target protein was docked effectively with
predicted hit compounds (Table 4). The promising binding
mode of action of best natural compounds and analog at
active sites is demonstrated in Figure 6. The common crucial
residues of target protein involved in the formation of hydro-
gen bonding are Gly47, Ala49, Thr21, and Thr1. The informa-
tion showed that the proteasome active pocket is occupied
by all the predicted compounds but NP and AP show high-
est docking score and similarity of the active site with that
of the complex molecule (Drug with target protein).
Moreover, result signified that the predicted best hits
showed the most positive and favorable environment inside
a defined and specific receptor cavity that might develop a
pharmacological reaction or response. So far, the two-

dimensional interaction part was also observed in order to
identify particular amino acid residues of the target and
atom of the antagonist participated in the molecular inter-
action. Though, a 2D graph examination of docking insight
indicated the numerous molecular communications through
hydrogen bonding, Pi-sigma interaction, etc. between pre-
dicted hits and the surrounding residues of the target in
order to reveal the mode of action which is liable for the
pharmacological response and defined receptor binding.

Based on this docking study, it could be anticipated that
both the active hits NP and AP adopt a satisfactory conform-
ation within the active binding pocket of the protein and
significant molecular interactions were observed very well
from the 2D and 3D figures of the interaction. These infer-
ences would support in direction of rational designing of
novel and more potential analogs or derivatives
against cancer.

Conclusion

In the current study, a QSAR study was done on 71 anti-
cancer compounds against human proteasome target. The
MLR QSAR model would help as a tool for virtual screening,

Table 4. Comparison of binding affinity of control drug and predicted natural and analog in terms of docking score and binding site residues against anticancer
proteasome target (PDB: 5LF3).

S.No. Compound
Docking
Score

Residues involved
in H- bonding

Residues interacted
and H-bond length

Binding pocket residues
within 4Å region

1 AP �25.14 Thr1, Gly47, Thr21 Gly47:O-1.82Å Thr1:O-3.04Å
Thr21:O2.82Å

Gly129, Sr130, Met 116, Ser48,
Thr20, Arg19, Ala49, Ser169,

2 NP �23.85 Thr1, Thr21, Thr20,
Arg19, Gly47, Ala49

Gly47:O-3.05Å Thr21:O-3.00Å
Thr1:O-2.77Å Ala49:O-3.06Å

Ser48, Met95, Ser169, Ser46

3 Bortezomib
(Control drug)

�28.2 Thr1, Thr21, Gly47, Ala49 ———————— Thr20, Ser48, Arg19, Thr52,
Ser46, Lys33, Arg45,Ser169

Figure 6. Docking pose and binding pocket residues with their best favorable conformation of top hit compounds and control drug against human proteasome
complex (PDB: 5LF3). (A) Docking protocol standardization by re-docking of co-crystallized ligand (Bortezomib drug) against human proteasome complex. (B)
Binding pocket site residues with the best fit conformation of predicted and control compounds. (C) Bortezomib (standard drug) docked with binding pocket site
residues (D) Docked conformation of NP (natural) with binding pocket residues. (E) Docked conformation of AP (analog) with binding pocket residues.
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understanding of the anticancer lead identification against
cancer. The established model indicated a strong correlation
between actual and predicted endpoints of the biological
activity/anticancer activity that specified the robustness and
validity of the derived linear model. Likewise, distinguished
and defined the crucial role of significant chemical descrip-
tors which govern the biological activity. In silico methodolo-
gies were adopted in this study to screen out top hit best,
effective and safe compounds namely NP and AP. Besides,
the top hit candidates were validated through evaluation of
compliance with pharmacokinetic parameters simultaneously
with Lipinski’s rule of five for drug-likeness and oral bioavail-
ability. Finally, the predicted hit compounds were further
directed to molecular docking studies in order to explore the
molecular mode of action and putative binding active site
for the proteasome target of NF-jB pathway. Also, the bind-
ing affinity and conformation of the candidate compounds,
NP and AP were found to have decent docking score of
�23.85 and �25.14 respectively and found as good as the
standard drug, Bortezomib with a score of �28.2.
Noteworthy, NP, AP and control drug revealed the promising
binding mode of action and four hydrogen bonds with com-
mon key residues of Gly47, Ala49, Thr21, and Thr1 in the
putative active pocket of the protein. This information also
highlighted that the proteasome binding pocket was cap-
tured by entire predicted active compounds but NP and AP
showed the highest docking score and similarity of the active
site with that of the standard drug. Hence, the two predi-
cated hit candidates viz., NP and AP were anticipated to be
the favorable and promising compound against proteasome
anticancer target. As far as we know, it is conceivably the
first work reported on this subject/topic using in silico
approaches. Henceforward, the employed studies could be
applied and explored as a pattern work for modern drug
designing process in the future. Moreover, the results
obtained would be of great support in advance and new
anticancer drug discovery procedure, and drug-like lead
identification and optimization based on the natural
active scaffold.
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